

Aluminium

	Steel	Aluminium Alloy	Aluminium Alloy	Aluminium Alloy
Moment of inertia I (mm ⁴)	$38,9 \cdot 10^6$	$116,7 \cdot 10^6$	$116,7 \cdot 10^6$	$116,7 \cdot 10^6$
Elast. Modulus E (N/mm ²)	210.000	70.000	70.000	70.000
Stiffness E x I (Nmm ²)	$8,17 \cdot 10^{12}$	$8,17 \cdot 10^{12}$	$8,17 \cdot 10^{12}$	$8,17 \cdot 10^{12}$
h (mm)	240	240	300	330
b (mm)	120	240,2	193,5	189,1
t (mm)	9,8	18,3	12,9	10
w (mm)	6,2	12	8	8
Weight (kg/m)	30,7	30,3	19,4	16,9

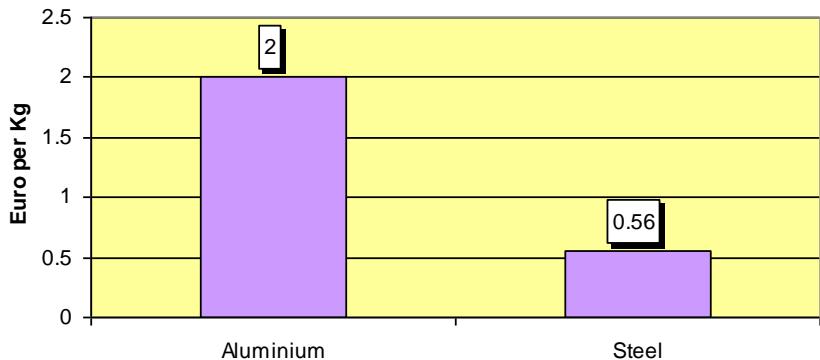
Aluminium

- In practice, the section-height of weight-optimised aluminium beams used will increase 30% compared to weight-optimised steel beams, while offering about 50% weight savings
- Aluminium specific fabrication techniques, such as complex, multi-hollow extrusions or thin-walled, high-strength, vacuum die castings, enable new design solutions.

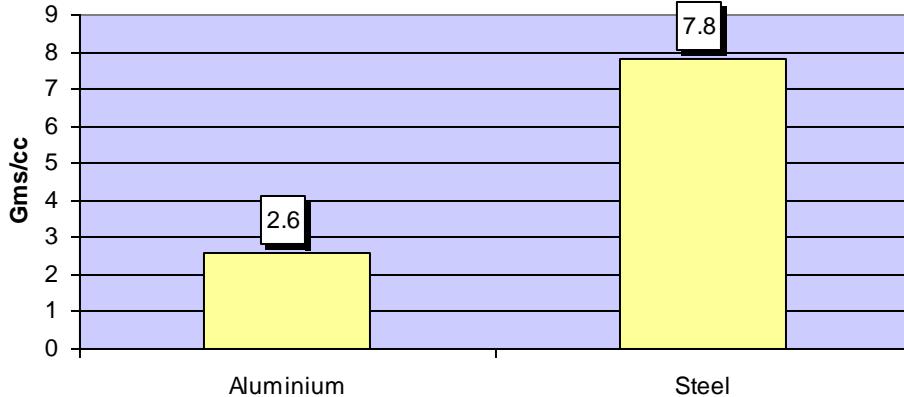
Aluminium Matrix Composites

- It can be utilized for high strength, higher stiffness at higher temperature
- Examples of actual and possible applications are:
- parts of combustion engines
- Radiator fans
- brake systems
- stiff beams
- load transfer elements in vehicles

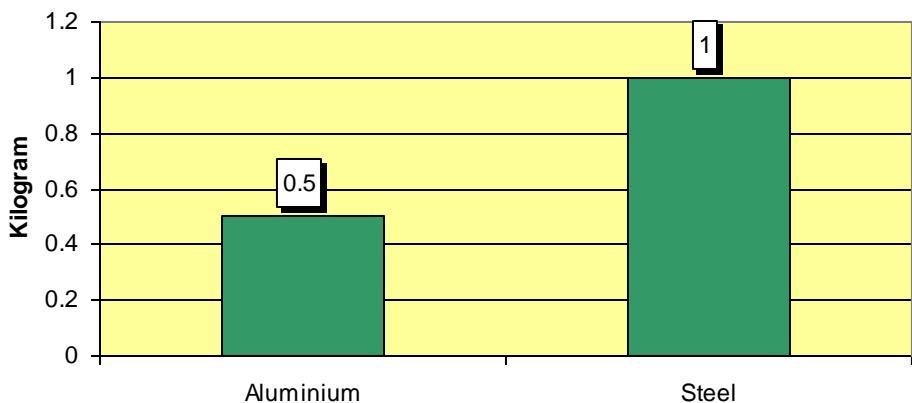
Aluminium Matrix Composites

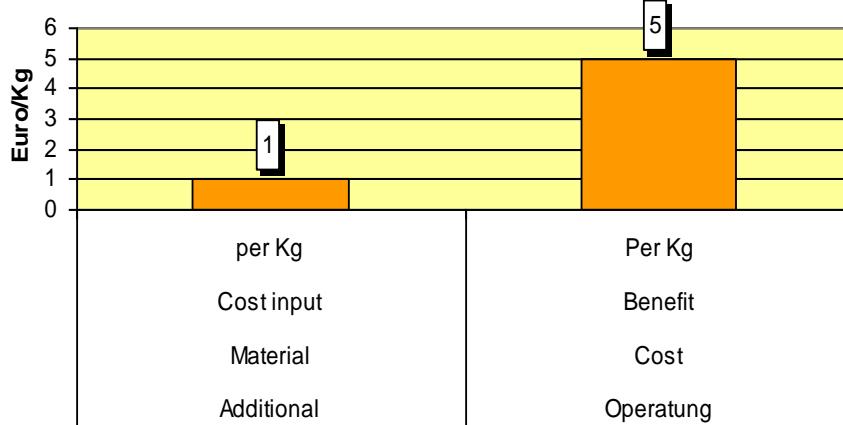

- Disadvantages are
- Cannot be fabricated, forged , extruded or rolled
- Can be cast
- Expensive
- Expertise is limited

Aluminium


- As a general indicator, 1 kg of automotive aluminium substituted for a heavier material in a vehicle typically avoids 20 kg of greenhouse gas emissions during its operating life.
- A vehicle's life cycle covers three discrete parts: production; use; and end-of-life. With the ability of aluminium to be recycled, this process is better described as “cradle to cradle” rather than “cradle to grave”.
- Recycled aluminium can be utilised for almost all applications & Scrap value of Aluminium is high
- It is corrosion resistant

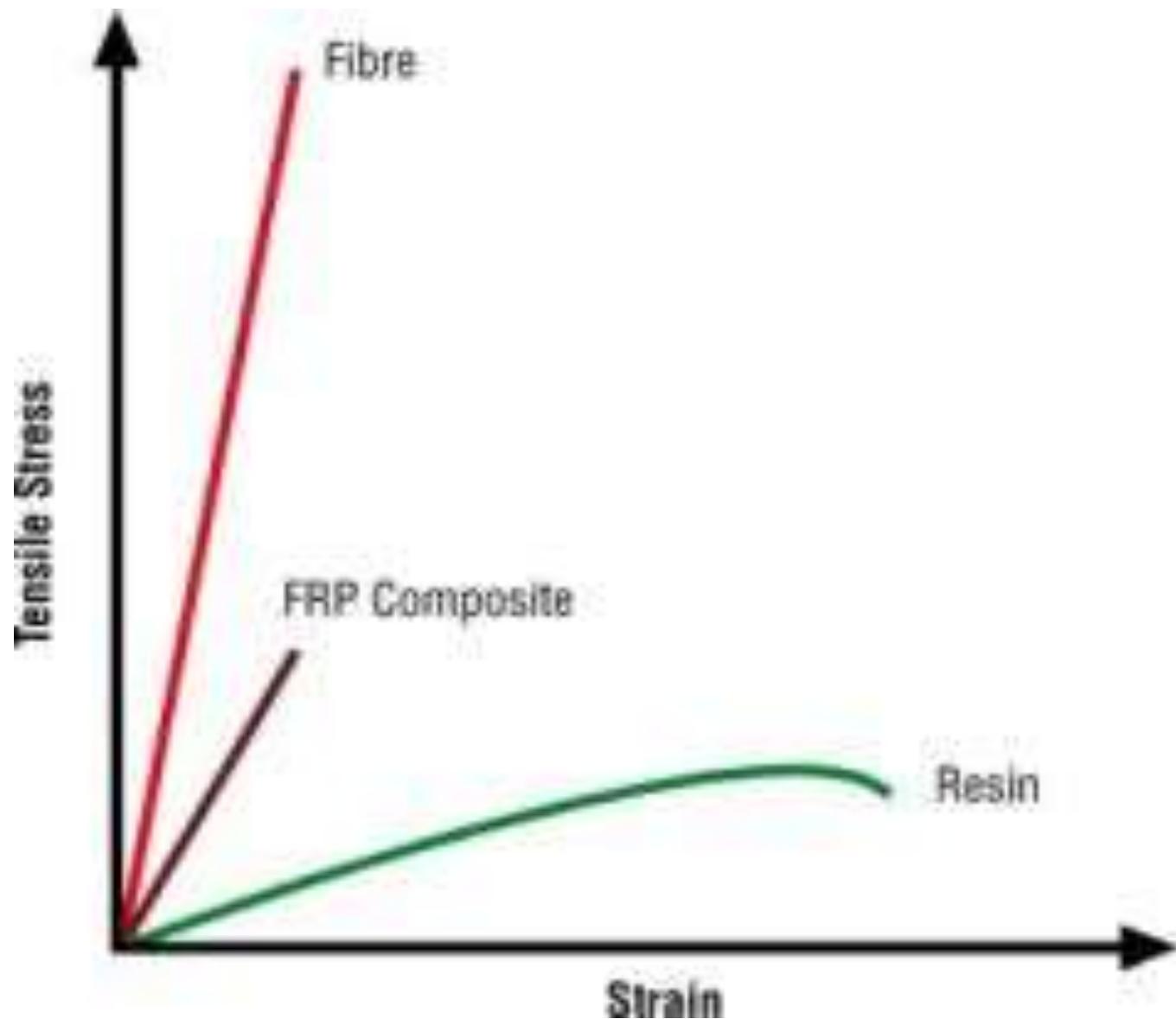
Vehicle type	Electricity consumption per 100 kg Weight	Electricity savings per 100 kg Weight Savings	Lifetime Distance	Lifetime electricity savings per 100 kg Weight Savings	Lifetime Greenhouse Gas savings per 1 kg Weight Savings kg CO2eq
	MJ/100 km	MJ/100 km	km	kWh	kg CO2eq
Subway/urban train – per wagon	2.5	2.00	3 000 000	167	71
Short distance train – per wagon	2.5	1.75	4 000 000	194	83
Normal Passenger train - per wagon	1.0	0.40	8 000 000	89	38
High-speed Passenger Train – per wagon	1.0	0.32	15 000 000	133	57
Freight train - per wagon	0.8	0.40	8 000 000	89	38


Material cost input


Density comparison

Light weighting

Cost Benefit


POLYMER COMPOSITE

Polymer Composites in Transport sector

- Composites are engineering materials, which are lighter, stiffer, flexible, corrosion resistant and readily mouldable to shape
- Transport is a major sector, where composite has entered with a great impact

Composite in Aerospace

- Due to the opportunities they present for weight saving, their share has reached more than 15 % of the structural weight of civil aircraft, and more than 50% of the structural weight of helicopters and fighter aircraft over the last 40 years.
- Composites are, besides aluminium, the most important materials for aerospace applications

FRP

- **Density of FRP is 1.6 to 2.3 gm/cc, It is lighter than Al**
- **Young's Modulus 12,000psi to 20,000psi**
- **Tensile strength can be matched with Al or steel**
- **Different proportion of fiber and resin can be manipulated to get the properties.**
- **Cost may vary from 0.18 Euro to 10 Euro per Kg**
- **The fibers are usually fiberglass, carbon, or aramid, while the polymer is usually an epoxy, vinylester or polyester thermosetting plastic**

Composites for Indian Railways –

- **FRP Gear-Case for Diesel & Electric Locomotives**
- **Features:**
- Reduced dead weight
- staggered fibre lay-up with rounded edges so as to reduce stress concentration and thus preventing edge cracking due to ballast hit
- No damage on ballast hits & leakage of lubricants
- longer life compared to 3 years for steel gear-case

